15 research outputs found

    Phosphodiesterase inhibitors roflumilast and vardenafil prevent sleep deprivation-induced deficits in spatial pattern separation

    Get PDF
    Sleep deprivation (SD) is known to impair hippocampus-dependent memory processes, in part by stimulating the phosphodiesterase (PDE) activity. In the present study, we assessed in mice whether SD also affects spatial pattern separation, a cognitive process that specifically requires the dentate gyrus (DG) subregion of the hippocampus. Adult male mice were trained in an object pattern separation (OPS) task in the middle of the light phase and then tested 24 hr thereafter. In total, we conducted three studies using the OPS task. In the first study, we validated the occurrence of pattern separation and tested the effects of SD. We found that 6 hr of SD during the first half of the light phase directly preceding the test trial impaired the spatial pattern separation performance. As a next step, we assessed in two consecutive studies whether the observed SD-induced performance deficits could be prevented by the systemic application of two different PDE inhibitors that are approved for human use. Both the PDE4 inhibitor roflumilast and PDE5 inhibitor vardenafil successfully prevented SD-induced deficits in spatial pattern separation. As a result, these PDE inhibitors have clinical potential for the prevention of memory deficits associated with loss of sleep

    Elucidating the role of protein synthesis in hippocampus-dependent memory consolidation across the day and night

    Get PDF
    It is widely acknowledged that de novo protein synthesis is crucial for the formation and consolidation of long‐term memories. While the basal activity of many signaling cascades that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the temporal dynamics of protein synthesis‐dependent memory consolidation vary depending on the time of day. More specifically, it is unclear whether protein synthesis inhibition affects hippocampus‐dependent memory consolidation in rodents differentially across the day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase with little sleep). To address this question, male and female C57Bl6/J mice were trained in a contextual fear conditioning task at the beginning or the end of the light phase. Animals received a single systemic injection with the protein synthesis inhibitor anisomycin or vehicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. Here, we show that protein synthesis inhibition impaired the consolidation of context–fear memories selectively when the protein synthesis inhibitor was administered at the first three time points, irrespective of timing of training. Even though the basal activity of signaling pathways regulating de novo protein synthesis may fluctuate across the 24‐hr cycle, these results suggest that the temporal dynamics of protein synthesis‐dependent memory consolidation are similar for day‐time and night‐time learning

    The effect of thermomechanical treatment on starch breakdown and the consequences for process design

    Get PDF
    Macromolecular degradation of starch by heating and shear forces was investigated using a newly developed shear cell. With this equipment, waxy corn starch was subjected to a variety of heat and shear treatments in order to find the key parameter determining the degree of macromolecular degradation. A model based on the maximal shear stress during the treatment gave an improved prediction compared to existing models in literature based on specific mechanical energy input (SME) or shear stress multiplied by time (τ·t). It was concluded that molecular weight reduction of starch at the temperatures investigated (85–110 °C) is a time-independent process, during which the starch molecules are broken down virtually instantaneously by high shear force within time scales investigated. Consequences for design of shear based processes (especially extrusion) are shortly discussed.

    Phosphodiesterase inhibitors roflumilast and vardenafil prevent sleep deprivation-induced deficits in spatial pattern separation

    No full text
    Sleep deprivation (SD) is known to impair hippocampus-dependent memory processes, in part by stimulating the phosphodiesterase (PDE) activity. In the present study, we assessed in mice whether SD also affects spatial pattern separation, a cognitive process that specifically requires the dentate gyrus (DG) subregion of the hippocampus. Adult male mice were trained in an object pattern separation (OPS) task in the middle of the light phase and then tested 24 hr thereafter. In total, we conducted three studies using the OPS task. In the first study, we validated the occurrence of pattern separation and tested the effects of SD. We found that 6 hr of SD during the first half of the light phase directly preceding the test trial impaired the spatial pattern separation performance. As a next step, we assessed in two consecutive studies whether the observed SD-induced performance deficits could be prevented by the systemic application of two different PDE inhibitors that are approved for human use. Both the PDE4 inhibitor roflumilast and PDE5 inhibitor vardenafil successfully prevented SD-induced deficits in spatial pattern separation. As a result, these PDE inhibitors have clinical potential for the prevention of memory deficits associated with loss of sleep

    The effect of thermomechanical treatment on starch breakdown and the consequences for process design

    No full text
    Macromolecular degradation of starch by heating and shear forces was investigated using a newly developed shear cell. With this equipment, waxy corn starch was subjected to a variety of heat and shear treatments in order to find the key parameter determining the degree of macromolecular degradation. A model based on the maximal shear stress during the treatment gave an improved prediction compared to existing models in literature based on specific mechanical energy input (SME) or shear stress multiplied by time (tau(.)t). It was concluded that molecular weight reduction of starch at the temperatures investigated (85-110degreesC) is a time-independent process, during which the starch molecules are broken down virtually instantaneously by high shear force within time scales investigated. Consequences for design of shear based processes (especially extrusion) are shortly discussed. (C) 2003 Elsevier Ltd. All rights reserved

    Recovering object-location memories after sleep deprivation-induced amnesia

    No full text
    It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast
    corecore